
inCUBE

AI models for energy consumption forecasting
Davide Molinari

FBK-DSIP

Table of contents

31. inCUBE

31.1 Description

31.2 Commands

42. Code Documentation

42.1 incube.main

82.2 incube.modeling.train

172.3 incube.modeling.predict

212.4 incube.modeling.model

Table of contents

- 2/23 - FBK-DSIP

1. inCUBE

1.1 Description

Time series multistep forecasting on consumptions of solar panels

1.2 Commands

The Makefile contains the central entry points for common tasks related to this project.

make test: for running all tests

make train: for training a model per every device

make predict: for inference next values used model device trained

make lint: for linting python files

make formatting: for formatting python files

make create_dataset: for creating dataset train and forecast

make create_environment: for creating virtual environment and install all libraries

•

•

•

•

•

•

•

1. inCUBE

- 3/23 - FBK-DSIP

2. Code Documentation

2.1 incube.main

2.1.1 get_inferenceobj(config, logger, device_folder)

Creates and returns an inference object based on the specified target model in the

configuration.

Parameters:

config (dict) – A dictionary containing configuration parameters.

Expected keys under the "predict" section include: -

"target_model" (str): The name of the target model (e.g., "GB"). -

"save_model_path" (str): Path to the directory where the model is saved.

- "stats_folder" (str): Path to the folder for saving statistics. -

"plot_folder" (str): Path to the folder for saving plots. -

"context_length" (int): Length of the context window for predictions. -

"horizon_length" (int): Length of the prediction horizon. - "step" (int):

Step size for predictions. - "output_path" (str): Path to save the output

predictions. - "timestamp_column" (str): Name of the timestamp column

in the data. - "categorical_features" (list): List of categorical feature

names. - "covariate_features" (list): List of covariate feature names.

logger (object) – Logger instance for logging messages.

device_folder (str) – Path to the folder containing device-specific data.

Returns:

PredictGB –

An instance of the PredictGB class if the target model is "GB".

Raises:

ValueError –

If the specified target model is not supported.

•

•

•

•

•

2. Code Documentation

- 4/23 - FBK-DSIP

2.1.2 get_trainobj(config, logger, device_folder)

Creates and returns a training object based on the specified configuration.

Parameters:

config (dict) – A dictionary containing the training configuration.

Expected keys under config["train"] include: - "target_model" (str): The

type of model to train. Currently supports "GB". - "cv" (int): Cross-

validation folds. - "strategy" (str): Training strategy. -

"early_stopping_rounds" (int): Number of rounds for early stopping. -

"eval_metric" (str): Evaluation metric for the model. -

"context_length" (int): Length of the context window. -

"horizon_length" (int): Length of the prediction horizon. - "step" (int):

Step size for predictions. - "covariate_features" (list): List of covariate

feature names. - "categorical_features" (list): List of categorical feature

names. - "train_size" (float): Proportion of data used for training. -

"valid_size" (float): Proportion of data used for validation. -

"test_size" (float): Proportion of data used for testing. -

"save_model_path" (str): Path to save the trained model. -

"extract_metrics" (bool): Whether to extract metrics during training. -

"stats_folder" (str): Folder to save statistical outputs. - "plot_folder" (str):

Folder to save plots. - "datetime_column" (str): Name of the datetime

column in the dataset. - "trials" (int): Number of trials for

hyperparameter optimization.

logger (Logger) – Logger instance for logging messages.

device_folder (str) – Path to the folder containing device-specific data.

Returns:

TrainGB – An instance of the TrainGB class configured with the provided

parameters.

Raises:

ValueError –

If the specified target_model is not supported.

•

•

•

•

•

2.1.2 get_trainobj(config, logger, device_folder)

- 5/23 - FBK-DSIP

2.1.3 load_config(config_path)

Loads a YAML configuration file from the specified path.

Parameters:

config_path (str) –

The file path to the YAML configuration file.

Returns:

dict –

The loaded configuration as a dictionary.

Raises:

SystemExit –

If the file is not found or cannot be loaded.

2.1.4 main(args)

The main entry point of the application. This function handles the execution of different

modes (train or predict) based on the provided arguments.

Parameters:

args (Namespace) – The command-line arguments containing the following: -

file (str): Path to the configuration file. - mode (str): The mode of

operation, either "train" or "predict".

Raises:

ValueError – If the provided mode is not supported.

Exception –

If any other error occurs during execution, it is logged.

Note

Ensure that the configuration file exists and is properly formatted. The logger is

initialized based on the provided arguments and configuration.

2.1.5 predict(config, logger, folders)

Perform prediction on processed dataset folders for each device.

Parameters:

config (dict) – Configuration dictionary containing dataset paths and

other settings. Expected to have a key "dataset" with a subkey

"path_processed" pointing to the directory of processed datasets.

logger (Logger) – Logger instance for logging debug information.

•

•

•

•

•

•

•

•

2.1.3 load_config(config_path)

- 6/23 - FBK-DSIP

The function iterates through all subdirectories in the processed dataset path, treating

each subdirectory as a device folder. For each device folder, it: 1. Extracts the device

name from the folder name. 2. Logs the start of the prediction process for the device. 3.

Creates an inference object using get_inferenceobj . 4. Calls the predict method of the

inference object to perform predictions. 5. Logs the completion of the prediction

process for the device.

2.1.6 read_data(config, logger, dataset_name)

Reads a processed dataset from a specified path and returns it as a DataFrame.

Parameters:

config (dict) – Configuration dictionary containing the dataset path under

the key "dataset" -> "path_processed".

logger (Logger) – Logger instance for logging debug information.

dataset_name (str) – Name of the dataset file to be read.

Returns:

–

pandas.DataFrame: The dataset loaded from the specified file.

Raises:

FileNotFoundError – If the specified dataset file does not exist.

Exception –

For any other issues encountered while reading the file.

2.1.7 set_logger(args, config)

Configures and initializes a logger based on the provided arguments and configuration.

Parameters:

args – An object containing runtime parameters. It must have an

attribute mode that determines the logging mode.

config (dict) – A dictionary containing logging configuration. It should

include a "logging" key with a valid logging configuration and a key

corresponding to args.mode with a "log_filename" entry.

Returns:

–

logging.Logger: A configured logger instance named "DatasetLogger".

•

•

•

•

•

•

•

•

•

2.1.6 read_data(config, logger, dataset_name)

- 7/23 - FBK-DSIP

2.1.8 train(config, logger, folders)

Trains models for each device folder found in the processed dataset path.

Parameters:

config (dict) – Configuration dictionary containing the dataset path and

other settings.

logger (Logger) – Logger instance for logging debug information.

The function iterates through all subdirectories in the processed dataset path, treating

each subdirectory as a device folder. For each device folder: 1. Logs the start of the

training process for the device. 2. Creates a training object using get_trainobj . 3.

Trains the model using the train_model method of the training object. 4. Logs the

completion of the training process for the device.

2.2 incube.modeling.train

2.2.1 TrainGB

__build_results_dataset(Y, preds, train_index, val_index, test_index)

Builds a results dataset by combining actual and predicted values generated by time

series model.

Parameters:

Y (DataFrame) – The original DataFrame containing the target time series

data.

preds (DataFrame) – The DataFrame containing the predicted values for the

time series.

train_index (Index) – Index of the training dataset.

val_index (Index) – Index of the validation dataset.

test_index (Index) – Index of the test dataset.

Returns:

– pd.DataFrame: A DataFrame containing the following columns: -

'timestamp_start': The original timestamp of the data point. -

'timestamp': The adjusted timestamp based on the lag. - 'lag': The lag

value for the data point. - 'actual': The actual target value. - 'pred': The

predicted value. - 'DATASET': The dataset type ('TRAIN', 'VALID', or

'TEST').

•

•

•

•

•

•

•

•

2.1.8 train(config, logger, folders)

- 8/23 - FBK-DSIP

Notes

The resulting DataFrame is sorted by 'timestamp_start' and 'lag'.

__create_lag_features(df_device)

Creates lag features for a given DataFrame based on the context length and horizon

length.

This method generates lagged feature columns and target columns for time series data.

It shifts the "ElectricWConsumed" column by positive and negative offsets to create

lagged features for model input and target prediction, respectively. The resulting

DataFrame is filtered to remove rows with NaN values in the lagged columns and is

downsampled based on the specified stride.

Parameters:

df_device (DataFrame) – The input DataFrame containing a "timestamp"

column and an "ElectricWConsumed" column.

Returns:

– pd.DataFrame: A DataFrame with lagged features and targets,

downsampled by the stride.

Attributes:

lag_cols_feat (list) – A list of column names for the lagged feature

columns.

lag_cols_target (list) – A list of column names for the lagged target

columns.

Notes

The DataFrame is sorted by the "timestamp" column before creating lag features.

Rows with NaN values in any of the lagged columns are dropped.

The stride parameter determines the downsampling rate of the resulting DataFrame.

•

•

•

•

•

•

•

•

2.2.1 TrainGB

- 9/23 - FBK-DSIP

__extract_metrics(X_train, y_train, X_val, y_val, X_test, y_test)

Extracts and computes evaluation metrics (RMSE, MAE, R2) for the model predictions

on training, validation, and test datasets. Optionally saves the computed metrics to a

CSV file if a stats folder is provided.

Parameters:

X_train (DataFrame) – Features for the training dataset.

y_train (Series) –

Target values for the training dataset.

X_val (DataFrame) – Features for the validation dataset.

y_val (Series) –

Target values for the validation dataset.

X_test (DataFrame) – Features for the test dataset.

y_test (Series) – Target values for the test dataset.

Returns:

– pd.DataFrame: A DataFrame containing the results dataset with

predictions and corresponding metrics for each lag and dataset type.

Notes

The method computes metrics for specific lags (0, 12, 23).

If self.stats_folder is not None, the metrics are saved to a CSV file named stats_<device>.csv in the specified

folder.

Logs a debug message if saving stats is skipped due to a None path.

__get_model(params)

Creates and returns an XGBoost model with the specified parameters.

Parameters:

params (dict) – A dictionary containing the hyperparameters for the

XGBoost model.

Returns:

– xgb.Booster: An instance of the XGBoost model configured with the

provided parameters.

•

•

•

•

•

•

•

•

•

•

•

•

2.2.1 TrainGB

- 10/23 - FBK-DSIP

__init__(cv: int, strategy: str, early_stopping_rounds: int, eval_metric: str, context_length: int,

horizon_length: int, stride: int, cov_cols: list, cat_cols: list, train_size: float, valid_size: float,

test_size: float, device_folder: str, logger: object, path_save_model: str, extract_metrics: bool,

stats_folder: str, plot_folder: str, timestamp_column: str, trials: int, return_results: bool, quantiles:

list, top_n: int)

Initialize the training configuration for the model.

Parameters:

cv (int) – Number of cross-validation folds.

strategy (str) – Training strategy to be used.

early_stopping_rounds (int) – Number of rounds for early stopping.

eval_metric (str) – Evaluation metric for model performance.

context_length (int) – Length of the context window.

horizon_length (int) – Length of the prediction horizon.

stride (int) – Step size for sliding window.

cov_cols (list) – List of covariate column names.

cat_cols (list) – List of categorical column names.

train_size (float) – Proportion of data to use for training.

valid_size (float) – Proportion of data to use for validation.

test_size (float) – Proportion of data to use for testing.

device_folder (str) – Path to the device folder.

logger (object) – Logger object for logging information.

path_save_model (str) – Path to save the trained model.

extract_metrics (bool) – Whether to extract metrics during training.

stats_folder (str) – Path to save statistical outputs.

plot_folder (str) – Path to save plots.

timestamp_column (str) –

Name of the timestamp column in the dataset.

trials (int) – Number of trials for hyperparameter optimization.

return_results (bool) – Whether to return results after training.

__plot_boxplot_per_lag(plot_path, df_results)

Generates and saves a boxplot visualizing the absolute error per lag and dataset.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2.1 TrainGB

- 11/23 - FBK-DSIP

This method calculates the absolute error between the actual and predicted values in

the provided DataFrame, and creates a boxplot to display the distribution of errors for

each lag and dataset type. The plot is saved as a PNG file.

Parameters:

plot_path (str) – The directory path where the plot will be saved.

df_results (DataFrame) – A DataFrame containing the following columns: -

"actual": The actual values. - "pred": The predicted values. - "lag": The

lag values. - "DATASET": The dataset type.

Saves

A PNG file of the boxplot at the specified plot_path with the filename formatted as

"{self.device}_BOXPLOT_ERROR.png".

__plot_features_importances(plot_path)

Plots and saves the feature importances of the model.

This method generates a plot of the feature importances for the model and saves it as a

PNG file in the specified directory.

Parameters:

plot_path (str) –

The directory path where the plot image will be saved.

Saves

A PNG file named "_FEAT_IMPORTANCES.png" in the specified plot_path directory,

where is the value of the self.device attribute.

__plot_lag0(plot_path, df_results)

Generates and saves a line plot for lag 0 predictions and actual values.

•

•

•

2.2.1 TrainGB

- 12/23 - FBK-DSIP

This method creates a plot comparing the actual values and predicted values for lag 0,

separated by dataset type (TRAIN, VALID, TEST). The plot is saved as a PNG file in the

specified directory.

Parameters:

plot_path (str) – The directory path where the plot image will be saved.

df_results (DataFrame) – A DataFrame containing the results with the

following columns: - "lag": The lag value (used to filter for lag 0). -

"timestamp": The timestamp for each data point. - "actual": The actual

observed values. - "pred": The predicted values. - "DATASET": The

dataset type (e.g., TRAIN, VALID, TEST).

Saves

A PNG file named "{device}_TRAIN_LAG0.png" in the specified plot_path directory,

where device is an attribute of the class instance.

__plot_random_day(plot_path, df_results)

Plots and saves a visualization of the actual vs predicted values for a random day from

the provided results dataframe.

Parameters:

plot_path (str) – The directory path where the plot image will be saved.

df_results (DataFrame) – A dataframe containing the results with columns

"timestamp_start", "timestamp", "actual", and "pred".

Saves

A PNG image of the plot in the specified plot_path directory with the filename format

"{device}_TRAIN_RANDOM_DAY.png".

__plots(df_results)

Generates and saves various plots based on the provided results dataframe.

•

•

•

•

2.2.1 TrainGB

- 13/23 - FBK-DSIP

This method creates a directory for saving plots if it does not already exist. It then

generates and saves the following types of plots: - Lag 0 plot - Random day plot -

Boxplot per lag - Feature importances plot

Parameters:

df_results (DataFrame) – The dataframe containing the results data used for

generating the plots.

Returns:

–

None

__read_data()

Reads and processes training data from a CSV file.

This method performs the following steps: 1. Reads the training data CSV file located in

the device folder. 2. Parses the specified timestamp column as datetime. 3. Creates lag

features for the dataset. 4. Splits the dataset into training and testing subsets.

Returns:

tuple – A tuple containing the training and testing datasets after

processing.

__save_model()

Saves the current model to a specified path in JSON format.

This method checks if the path_save_model attribute is set. If it is None , the method logs

a debug message and skips the save operation. Otherwise, it creates the necessary

directory structure and saves the model to a JSON file named after the device.

The saved model file will be located at: <path_save_model>/GB/<device>.json

Note

The method assumes that the self.model object has a save_model method that handles saving the model to the

specified file path.

Returns:

–

None

__search_best_parameters(X_train, y_train, X_val, y_val)

Searches for the best hyperparameters for the model using Optuna.

•

•

•

•

•

2.2.1 TrainGB

- 14/23 - FBK-DSIP

This method performs hyperparameter optimization for an XGBoost model by defining a

search space and evaluating the performance of different parameter combinations

using a validation dataset. The best parameters are then used to create and return a

model.

Parameters:

X_train (DataFrame or ndarray) –

Training feature set.

y_train (Series or ndarray) –

Training target values.

X_val (DataFrame or ndarray) –

Validation feature set.

y_val (Series or ndarray) –

Validation target values.

Returns:

– xgb.Booster: An XGBoost model trained with the best

hyperparameters.

Notes

The method uses Optuna to perform the hyperparameter search.

The objective function minimizes the root mean squared error (RMSE) on the validation dataset.

The best hyperparameters and the corresponding score are logged.

Raises:

ValueError –

If the input data is not in the expected format.

•

•

•

•

•

•

•

•

•

2.2.1 TrainGB

- 15/23 - FBK-DSIP

__split_dataset(df_device)

Splits the dataset into training, validation, and test sets, and separates features (X) and

target (y) for each set.

Parameters:

df_device (DataFrame) – The input dataframe containing the dataset to be

split. It must include columns for categorical features, covariate

features, lag features, and the target.

Returns:

tuple – A tuple containing the following: - X_train (pd.DataFrame):

Features for the training set. - y_train (pd.DataFrame): Target for the

training set. - X_val (pd.DataFrame): Features for the validation set. -

y_val (pd.DataFrame): Target for the validation set. - X_test

(pd.DataFrame): Features for the test set. - y_test (pd.DataFrame):

Target for the test set.

Notes

The dataframe is expected to have a "timestamp" column, which will be used as the index.

The categorical columns specified in self.cat_cols are converted to the "category" dtype.

The split sizes are determined by self.train_size , self.valid_size , and self.test_size , which represent

proportions of the dataset.

The self.horizon_length parameter is used to exclude the last portion of the dataset from the test set.

The features are selected based on self.cov_cols and self.lag_cols_feat , while the target is selected based on

self.lag_cols_target .

train_model()

Trains the model using the provided training, validation, and test datasets.

This method reads the data, searches for the best model parameters, trains the model,

saves the trained model, and optionally extracts metrics and generates plots.

Returns:

– pd.DataFrame or None: A DataFrame containing the extracted metrics

if self.return_results

– is True and self.extract_metrics is enabled, otherwise None.

•

•

•

•

•

•

•

•

•

2.2.1 TrainGB

- 16/23 - FBK-DSIP

Steps

Reads the training, validation, and test datasets.

Searches for the best model parameters using the validation set.

Trains the model on the training dataset.

Saves the trained model to disk.

Optionally extracts metrics and generates plots if self.extract_metrics is True.

Returns the metrics DataFrame if self.return_results is True.

Note

The method assumes that the following helper methods are implemented:

__read_data : Reads and splits the data into training, validation, and test sets.

__search_best_parameters : Searches for the best hyperparameters for the model.

__save_model : Saves the trained model to disk.

__extract_metrics : Extracts performance metrics for the model.

__plots : Generates plots for the extracted metrics.

Logging is used to track the progress of the training process.

2.3 incube.modeling.predict

2.3.1 PredictGB

__build_results_dataset(start_time, preds)

Builds a results dataset containing lag values, timestamps, and predictions.

Parameters:

start_time (Timestamp) – The starting timestamp for generating the time

series.

preds (list or ndarray) – A list or array of prediction values corresponding to

the horizon length.

Returns:

– pd.DataFrame: A DataFrame containing the following columns: - 'lag':

The lag values ranging from 0 to horizon_length - 1. - 'timestamp': The

timestamps generated by adding hourly offsets to the start_time. -

'pred': The prediction values forecasted by the model.

__create_lag_features(df_device)

Creates lag features for a given DataFrame to be used in time series modeling.

1.

2.

3.

4.

5.

6.

•

•

•

•

•

•

•

•

•

•

2.3 incube.modeling.predict

- 17/23 - FBK-DSIP

This method generates lagged features for both past (context) and future (horizon)

values of the "ElectricWConsumed" column. It also removes rows with missing values

resulting from the lagging process and applies a stride to downsample the data.

Parameters:

df_device (DataFrame) – The input DataFrame containing a time-indexed

"ElectricWConsumed" column.

Returns:

– pd.DataFrame: A DataFrame with lagged features added, rows with

missing values removed, and downsampled according to the stride.

Attributes:

self.lag_cols_feat (list) – A list of column names for the past lagged

features.

self.lag_cols_target (list) – A list of column names for the future lagged

features.

Notes

The context_length attribute determines the number of past lags to create.

The horizon_length attribute determines the number of future lags to create.

The stride attribute determines the downsampling rate of the resulting DataFrame.

__forecast(df_forecast)

Generates a forecast using the provided dataframe and the trained model.

Parameters:

df_forecast (DataFrame) – A dataframe containing the input features and

lagged columns required for forecasting. The dataframe should include

columns specified in self.cov_cols and self.lag_cols_feat for input

features, and self.lag_cols_target for target lagged values.

Returns:

– pd.DataFrame: A dataframe containing the forecast results, built using

the predictions

– and the index of the last row in the input dataframe.

•

•

•

•

•

•

•

•

•

•

2.3.1 PredictGB

- 18/23 - FBK-DSIP

__init__(path_model, device_folder, logger, stats_folder, plot_folder, context_length, horizon_length,

stride, output_path, return_results, timestamp_column, cat_cols, cov_cols)

Initializes the prediction model with the specified parameters.

Parameters:

path_model (str) – Path to the model file.

device_folder (str) –

Path to the folder containing device-specific data.

logger (Logger) – Logger instance for logging messages.

stats_folder (str) – Path to the folder for saving statistical outputs.

plot_folder (str) – Path to the folder for saving plots.

context_length (int) – Length of the context window for predictions.

horizon_length (int) – Length of the prediction horizon.

stride (int) – Step size for moving the context window.

output_path (str) – Path to save the prediction results.

return_results (bool) – Whether to return the prediction results.

timestamp_column (str) – Name of the column containing timestamps.

cat_cols (list) – List of categorical column names.

cov_cols (list) – List of covariate column names.

__load_model()

Loads a machine learning model for the specified device.

This method constructs the path to the model file based on the device name. If the

model file does not exist at the constructed path, a warning is logged. The method then

initializes an XGBRegressor instance and loads the model from the specified file.

Attributes:

self.path_model (str) – The base path where the model files are stored.

self.device (str) – The name of the device for which the model is being

loaded.

self.logger (Logger) – Logger instance for logging warnings or errors.

self.model (XGBRegressor) – The machine learning model instance.

Raises:

FileNotFoundError –

If the model file does not exist at the specified path.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.3.1 PredictGB

- 19/23 - FBK-DSIP

__plot(df_results)

Generates and saves a plot of predictions over time.

This method creates a line plot using the provided DataFrame df_results , which

contains timestamps and prediction values. The plot is saved as a PNG file in a specified

folder structure based on the plot_folder and device attributes of the class. If

plot_folder is None, the method skips the plotting process.

Parameters:

df_results (DataFrame) – A DataFrame containing the following columns: -

"timestamp": The timestamps for the x-axis. - "pred": The prediction

values for the y-axis.

Behavior

Creates a directory structure if it does not exist.

Saves the plot as a PNG file named <device>_INFERENCE.png in the folder <plot_folder>/<device> .

Configures the plot with appropriate titles, labels, and font sizes.

Notes

The method uses matplotlib for plotting.

The plot is closed after saving to free up resources.

If plot_folder is None, a debug message is logged, and the method returns without generating a plot.

__read_data()

Reads and processes historical and forecast data for a device.

This method reads forecast CSV files, located in the device_folder directory. It ensures

that the historical data matches the required context length and the forecast data

matches the required horizon length. Categorical columns are converted to the

"category" data type.

Returns:

– pd.DataFrame: A DataFrame containing the concatenated historical

and

– forecast data, with categorical columns properly typed.

Raises:

Exception –

If the size of the historical data is less than the required

Exception – If the size of the forecast data is less than the required

•

•

•

•

•

•

•

•

•

•

•

2.3.1 PredictGB

- 20/23 - FBK-DSIP

__save_forecast(df_results)

Saves the forecast results to a CSV file if an output path is specified.

Parameters:

df_results (DataFrame) –

The DataFrame containing the forecast results.

Returns:

–

None

Notes

If self.output_path is None, the method logs a debug message and skips saving.

The file is saved with the name of the device as <device>.csv in the specified output path.

predict()

Executes the prediction process by loading the model, reading input data, creating lag

features, generating forecasts, saving the results, and plotting the forecasts. Optionally

returns the forecast results.

Steps: 1. Load the prediction model. 2. Read the input data required for forecasting. 3.

Create lag features from the input data. 4. Generate forecasts using the model. 5. Save

the forecast results to a CSV file. 6. Plot the forecast results. 7. Optionally return the

forecast results if self.return_results is True.

Returns:

–

pd.DataFrame or None: The forecast results as a DataFrame if

– self.return_results is True, otherwise None.

2.4 incube.modeling.model

2.4.1 XGBRegressorQuantileMultistep

Bases: XGBRegressor

fit(X, y, **kwargs)

Fits multiple models for time series forecasting using XGBoost.

•

•

•

•

•

•

2.4 incube.modeling.model

- 21/23 - FBK-DSIP

This method trains a series of models, one for each target in the prediction horizon,

using quantile regression. The training and validation datasets are provided as inputs,

along with additional parameters for model configuration.

Parameters:

X (DataFrame) – The feature matrix for training.

y (DataFrame) – The target matrix for training, containing lagged values.

**kwargs – Additional keyword arguments, including: - eval_set (list): A list

containing a tuple of validation features and targets (X_val, y_val). -

verbose (bool): If True, prints progress information during model fitting.

Attributes:

self.models (dict) – A dictionary storing the trained models for each target

in the prediction horizon.

self.params (dict) – Parameters for the XGBoost model.

Raises:

KeyError – If 'eval_set' is not provided in kwargs.

ValueError – If the validation set does not contain the expected lagged

targets.

Example

model.fit(X_train, y_train, eval_set=[(X_val, y_val)], verbose=True)

get_features_importance(importance_type='gain', top_n=15)

Compute and return the aggregated feature importance across all trained models. This

method calculates the importance of features based on the specified importance type

and aggregates the values across all models in the ensemble. It then returns the top N

features sorted by their importance. Parameters:

importance_type : str, optional The type of importance to retrieve from the models.

Default is 'gain'. Common options include 'weight', 'gain', 'cover', etc., depending on the

model's API. top_n : int, optional The number of top features to return based on their

importance. Default is 15. Returns:

pd.Series A pandas Series containing the top N features sorted by their aggregated

importance across all models. The index represents the feature names, and the values

represent their importance scores. Raises:

•

•

•

•

•

•

•

2.4.1 XGBRegressorQuantileMultistep

- 22/23 - FBK-DSIP

ValueError If no models have been trained yet (i.e., self.models is empty).

predict(X, y=None)

Generate predictions for the given input data and optionally compare them with actual

values.

Parameters:

X (DataFrame) – Input features for prediction. The index of the DataFrame

is expected to represent timestamps.

y (DataFrame , default: None) – Actual values for comparison. If provided, it

should contain columns named

Returns:

– pd.DataFrame: A DataFrame containing the following columns:

–

'timestamp_start': The original timestamps from the input data, repeated for each

prediction lag.

–

'timestamp': The predicted timestamps for each lag.

–

'lag': The lag index for each prediction.

–

'pred': The predicted values.

–

'lower_bound': The lower bound of the prediction interval.

–

'upper_bound': The upper bound of the prediction interval.

–

'actual' (optional): The actual values corresponding to each lag, if y is provided.

Notes

The method assumes that self.models is a list of models, each corresponding to a specific lag.

Each model in self.models should have an inplace_predict method that returns predictions in the form of a 2D

array with columns representing lower bound, predicted value, and upper bound.

The length of self.models should match self.prediction_len , which defines the number of lags to predict.

•

•

•

•

◦

•

◦

•

◦

•

◦

•

◦

•

◦

•

◦

•

•

•

2.4.1 XGBRegressorQuantileMultistep

- 23/23 - FBK-DSIP

	inCUBE
	1. inCUBE
	1.1 Description
	1.2 Commands

	2. Code Documentation
	2.1 incube.main
	2.1.1 get_inferenceobj(config, logger, device_folder)
	2.1.2 get_trainobj(config, logger, device_folder)
	2.1.3 load_config(config_path)
	2.1.4 main(args)
	2.1.5 predict(config, logger, folders)
	2.1.6 read_data(config, logger, dataset_name)
	2.1.7 set_logger(args, config)
	2.1.8 train(config, logger, folders)

	2.2 incube.modeling.train
	2.2.1 TrainGB
	__build_results_dataset(Y, preds, train_index, val_index, test_index)
	__create_lag_features(df_device)
	__extract_metrics(X_train, y_train, X_val, y_val, X_test, y_test)
	__get_model(params)
	__init__(cv: int, strategy: str, early_stopping_rounds: int, eval_metric: str, context_length: int, horizon_length: int, stride: int, cov_cols: list, cat_cols: list, train_size: float, valid_size: float, test_size: float, device_folder: str, logger: object, path_save_model: str, extract_metrics: bool, stats_folder: str, plot_folder: str, timestamp_column: str, trials: int, return_results: bool, quantiles: list, top_n: int)
	__plot_boxplot_per_lag(plot_path, df_results)
	__plot_features_importances(plot_path)
	__plot_lag0(plot_path, df_results)
	__plot_random_day(plot_path, df_results)
	__plots(df_results)
	__read_data()
	__save_model()
	__search_best_parameters(X_train, y_train, X_val, y_val)
	__split_dataset(df_device)
	train_model()

	2.3 incube.modeling.predict
	2.3.1 PredictGB
	__build_results_dataset(start_time, preds)
	__create_lag_features(df_device)
	__forecast(df_forecast)
	__init__(path_model, device_folder, logger, stats_folder, plot_folder, context_length, horizon_length, stride, output_path, return_results, timestamp_column, cat_cols, cov_cols)
	__load_model()
	__plot(df_results)
	__read_data()
	__save_forecast(df_results)
	predict()

	2.4 incube.modeling.model
	2.4.1 XGBRegressorQuantileMultistep
	fit(X, y, **kwargs)
	get_features_importance(importance_type='gain', top_n=15)
	predict(X, y=None)

